For IGF
data from nlme
library, I\'m getting this error message:
lme(conc ~ 1, data=IGF, random=~age|Lot)
Error in lme.formula(conc ~ 1
If you plot the data, you can see that there is no effect of age
, so it seems strange to be trying to fit a random effect of age
in spite of this. No wonder it is not converging.
library(nlme)
library(ggplot2)
dev.new(width=6, height=3)
qplot(age, conc, data=IGF) + facet_wrap(~Lot, nrow=2) + geom_smooth(method='lm')
I think what you want to do is model a random effect of Lot
on the intercept. We can try including age
as a fixed effect, but we'll see that it is not significant and can be thrown out:
> summary(lme(conc ~ 1 + age, data=IGF, random=~1|Lot))
Linear mixed-effects model fit by REML
Data: IGF
AIC BIC logLik
604.8711 618.7094 -298.4355
Random effects:
Formula: ~1 | Lot
(Intercept) Residual
StdDev: 0.07153912 0.829998
Fixed effects: conc ~ 1 + age
Value Std.Error DF t-value p-value
(Intercept) 5.354435 0.10619982 226 50.41849 0.0000
age -0.000817 0.00396984 226 -0.20587 0.8371
Correlation:
(Intr)
age -0.828
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-5.46774548 -0.43073893 -0.01519143 0.30336310 5.28952876
Number of Observations: 237
Number of Groups: 10