Efficient way to generate combinations ordered by increasing sum of indexes

前端 未结 2 2027
-上瘾入骨i
-上瘾入骨i 2021-02-20 03:41

For a heuristic algorithm I need to evaluate, one after the other, the combinations of a certain set until I reach a stop criterion.

Since they are a lot, at the momen

2条回答
  •  无人及你
    2021-02-20 04:10

    For the sake of completeness and clarity I'll post my final code:

    // Given a pool of elements returns all the 
    // combinations of the groups of lenght r in pool, 
    // such that the combinations are ordered (ascending) by the sum of 
    // the indexes of the elements.
    // e.g. pool = {A,B,C,D,E} r = 3
    // returns
    // (A, B, C)   indexes: (0, 1, 2)   sum: 3
    // (A, B, D)   indexes: (0, 1, 3)   sum: 4
    // (A, B, E)   indexes: (0, 1, 4)   sum: 5
    // (A, C, D)   indexes: (0, 2, 3)   sum: 5
    // (A, C, E)   indexes: (0, 2, 4)   sum: 6
    // (B, C, D)   indexes: (1, 2, 3)   sum: 6
    // (A, D, E)   indexes: (0, 3, 4)   sum: 7
    // (B, C, E)   indexes: (1, 2, 4)   sum: 7
    // (B, D, E)   indexes: (1, 3, 4)   sum: 8
    // (C, D, E)   indexes: (2, 3, 4)   sum: 9
    public static IEnumerable
    GetCombinationsSortedByIndexSum(this IList pool, int r)
    {
        int n = pool.Count;
        if (r > n)
            throw new ArgumentException("r cannot be greater than pool size");
        int minSum = F(r - 1);
        int maxSum = F(n) - F(n - r - 1);
    
        for (int sum = minSum; sum <= maxSum; sum++)
        {
            foreach (var indexes in AllSubSequencesWithGivenSum(0, n - 1, r, sum))
                yield return indexes.Select(x => pool[x]).ToArray();
        }
    }
    
    
    // Given a start element and a last element of a sequence of consecutive integers
    // returns all the monotonically increasing subsequences of length "m" having sum "sum"
    // e.g. seqFirstElement = 1, seqLastElement = 5, m = 3, sum = 8
    //      returns {1,2,5} and {1,3,4}
    static IEnumerable>
    AllSubSequencesWithGivenSum(int seqFirstElement, int seqLastElement, int m, int sum)
    {
        int lb = sum - F(seqLastElement) + F(seqLastElement - m + 1);
        int ub = sum - F(seqFirstElement + m - 1) + F(seqFirstElement);
    
        lb = Math.Max(seqFirstElement, lb);
        ub = Math.Min(seqLastElement - m + 1, ub);
    
        for (int i = lb; i <= ub; i++)
        {
            if (m == 1)
            {
                if (i == sum) // this check shouldn't be necessary anymore since LB/UB should automatically exclude wrong solutions
                    yield return new int[] { i };
            }
            else
            {
                foreach (var el in AllSubSequencesWithGivenSum(i + 1, seqLastElement, m - 1, sum - i))
                    yield return new int[] { i }.Concat(el);
            }
        }
    }
    
    // Formula to compute the sum of the numbers from 0 to n
    // e.g. F(4) = 0 + 1 + 2 + 3 + 4 = 10
    static int F(int n)
    {
        return (n * (n + 1)) / 2;
    }
    

提交回复
热议问题