Evaluating the following integral should be non-zero, and mathematica correctly gives a non-zero result
Integrate[ Cos[ (Pi * x)/2 ]^2 * Cos[ (3*Pi*x)/2 ]^2, {x,
Lets use some conclusive conditions about the two integers m=n||m!=n
.
Assuming[{(n \[Element] Integers && m \[Element] Integers && m == n)},
Integrate[Cos[(Pi x)/2]^2 Cos[((2 n + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/2],
{x, -1, 1}]]
The answer for this case is 1/2
. For the other case it is
Assuming[{(n \[Element] Integers && m \[Element] Integers && m != n)},
Integrate[
Cos[(Pi x)/2]^2 Cos[((2 n + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/
2], {x, -1, 1}]]
and the answer is 0
.
However I am amazed to see that if we add this two conditions as an "either or stuff", Mathematica returns one zero after integration. I mean in case of the following I am getting only zero but not ``1/2||0`.
Assuming[{(n \[Element] Integers && m \[Element] Integers &&
m == n) || (n \[Element] Integers && m \[Element] Integers &&
m != n)},
Integrate[
Cos[(Pi x)/2]^2 Cos[((2 n + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/
2], {x, -1, 1}]]
By the way we can see the conditions exclusively where this integral becomes Indeterminate
.
res = Integrate[
Cos[(Pi x)/2]^2 Cos[((2 n + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/
2], {x, -1, 1}] // Simplify
The output is here.
Now lets see all the relations m
and n
can have to make the Integral
bad!
BadPart = (res*4 Pi);
Flatten@(Solve[(Denominator[#] == 0), m] & /@
Table[BadPart[[i]], {i, 1, Length@BadPart}] /.
Rule -> Equal) // TableForm
So these are the special cases which as Sjoerd mentioned are having infinite instances.
BR