Evaluating the following integral should be non-zero, and mathematica correctly gives a non-zero result
Integrate[ Cos[ (Pi * x)/2 ]^2 * Cos[ (3*Pi*x)/2 ]^2, {x,
Not always zero ...
k = Integrate[
Cos[(Pi x)/2]^2 Cos[((2 (n) + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/ 2],
{x, -1, 1}, Assumptions -> Element[{m, n}, Integers]];
(*Let's find the zeroes of the denominator *)
d = Denominator[k];
s = Solve[d == 0, {m, n}]
(*The above integral is indeterminate at those zeroes, so let's compute
the integral again there (a Limit[] could also do the work) *)
denZ = Integrate[
Cos[(Pi x)/2]^2 Cos[((2 (n) + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/ 2] /.s,
{x, -1, 1}, Assumptions -> Element[{m, n}, Integers]];
(* All possible results are generated with m=1 *)
denZ /. m -> 1
(*
{1/4, 1/2, 1/4, 1/4, 1/2, 1/4}
*)
Visualizing those cases:
Plot[Cos[(Pi x)/2]^2 Cos[((2 (n) + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/2]
/. s /. m -> 1, {x, -1, 1}]
Compare with a zero result integral one:
Plot[Cos[(Pi x)/2]^2 Cos[((2 (n) + 1) Pi x)/2] Cos[((2 m + 1) Pi x)/ 2]
/. {m -> 1, n -> 4}, {x, -1, 1}]