I\'m just starting up with F# and see how you can use currying to pre-load the 1st parameter to a function. But how would one do it with the 2nd, 3rd, or whatever other paramet
It's possible to do this without declaring anything, but I agree with Brian that a lambda or a custom function is probably a better solution.
I find that I most frequently want this for partial application of division or subtraction.
> let halve = (/) >> (|>) 2.0;;
> let halfPi = halve System.Math.PI;;
val halve : (float -> float)
val halfPi : float = 1.570796327
To generalize, we can declare a function applySecond
:
> let applySecond f arg2 = f >> (|>) arg2;;
val applySecond : f:('a -> 'b -> 'c) -> arg2:'b -> ('a -> 'c)
To follow the logic, it might help to define the function thus:
> let applySecond f arg2 =
- let ff = (|>) arg2
- f >> ff;;
val applySecond : f:('a -> 'b -> 'c) -> arg2:'b -> ('a -> 'c)
Now f
is a function from 'a
to 'b -> 'c
. This is composed with ff
, a function from 'b -> 'c
to 'c
that results from the partial application of arg2
to the forward pipeline operator. This function applies the specific 'b
value passed for arg2
to its argument. So when we compose f
with ff
, we get a function from 'a
to 'c
that uses the given value for the 'b
argument, which is just what we wanted.
Compare the first example above to the following:
> let halve f = f / 2.0;;
> let halfPi = halve System.Math.PI;;
val halve : f:float -> float
val halfPi : float = 1.570796327
Also compare these:
let filterTwoDigitInts = List.filter >> (|>) [10 .. 99]
let oddTwoDigitInts = filterTwoDigitInts ((&&&) 1 >> (=) 1)
let evenTwoDigitInts = filterTwoDigitInts ((&&&) 1 >> (=) 0)
let filterTwoDigitInts f = List.filter f [10 .. 99]
let oddTwoDigitInts = filterTwoDigitInts (fun i -> i &&& 1 = 1)
let evenTwoDigitInts = filterTwoDigitInts (fun i -> i &&& 1 = 0)
Alternatively, compare:
let someFloats = [0.0 .. 10.0]
let theFloatsDividedByFour1 = someFloats |> List.map ((/) >> (|>) 4.0)
let theFloatsDividedByFour2 = someFloats |> List.map (fun f -> f / 4.0)
The lambda versions seem to be easier to read.