What\'s different between UTF-8 and UTF-8 without a BOM? Which is better?
Here are examples of the BOM usage that actually cause real problems and yet many people don't know about it.
Shell scripts, Perl scripts, Python scripts, Ruby scripts, Node.js scripts or any other executable that needs to be run by an interpreter - all start with a shebang line which looks like one of those:
#!/bin/sh
#!/usr/bin/python
#!/usr/local/bin/perl
#!/usr/bin/env node
It tells the system which interpreter needs to be run when invoking such a script. If the script is encoded in UTF-8, one may be tempted to include a BOM at the beginning. But actually the "#!" characters are not just characters. They are in fact a magic number that happens to be composed out of two ASCII characters. If you put something (like a BOM) before those characters, then the file will look like it had a different magic number and that can lead to problems.
See Wikipedia, article: Shebang, section: Magic number:
The shebang characters are represented by the same two bytes in extended ASCII encodings, including UTF-8, which is commonly used for scripts and other text files on current Unix-like systems. However, UTF-8 files may begin with the optional byte order mark (BOM); if the "exec" function specifically detects the bytes 0x23 and 0x21, then the presence of the BOM (0xEF 0xBB 0xBF) before the shebang will prevent the script interpreter from being executed. Some authorities recommend against using the byte order mark in POSIX (Unix-like) scripts,[14] for this reason and for wider interoperability and philosophical concerns. Additionally, a byte order mark is not necessary in UTF-8, as that encoding does not have endianness issues; it serves only to identify the encoding as UTF-8. [emphasis added]
See RFC 7159, Section 8.1:
Implementations MUST NOT add a byte order mark to the beginning of a JSON text.
Not only it is illegal in JSON, it is also not needed to determine the character encoding because there are more reliable ways to unambiguously determine both the character encoding and endianness used in any JSON stream (see this answer for details).
Not only it is illegal in JSON and not needed, it actually breaks all software that determine the encoding using the method presented in RFC 4627:
Determining the encoding and endianness of JSON, examining the first four bytes for the NUL byte:
00 00 00 xx - UTF-32BE
00 xx 00 xx - UTF-16BE
xx 00 00 00 - UTF-32LE
xx 00 xx 00 - UTF-16LE
xx xx xx xx - UTF-8
Now, if the file starts with BOM it will look like this:
00 00 FE FF - UTF-32BE
FE FF 00 xx - UTF-16BE
FF FE 00 00 - UTF-32LE
FF FE xx 00 - UTF-16LE
EF BB BF xx - UTF-8
Note that:
Depending on the implementation, all of those may be interpreted incorrectly as UTF-8 and then misinterpreted or rejected as invalid UTF-8, or not recognized at all.
Additionally, if the implementation tests for valid JSON as I recommend, it will reject even the input that is indeed encoded as UTF-8, because it doesn't start with an ASCII character < 128 as it should according to the RFC.
BOM in JSON is not needed, is illegal and breaks software that works correctly according to the RFC. It should be a nobrainer to just not use it then and yet, there are always people who insist on breaking JSON by using BOMs, comments, different quoting rules or different data types. Of course anyone is free to use things like BOMs or anything else if you need it - just don't call it JSON then.
For other data formats than JSON, take a look at how it really looks like. If the only encodings are UTF-* and the first character must be an ASCII character lower than 128 then you already have all the information needed to determine both the encoding and the endianness of your data. Adding BOMs even as an optional feature would only make it more complicated and error prone.
As for the uses outside of JSON or scripts, I think there are already very good answers here. I wanted to add more detailed info specifically about scripting and serialization, because it is an example of BOM characters causing real problems.