I want to test if a number double x
is an integer power of 10. I could perhaps use cmath\'s log10
and then test if x == (int) x
?
<
A variant of this one:
double log10_value= log10(value);
double integer_value;
double fractional_value= modf(log10_value, &integer_value);
return fractional_value==0.0;
Note that the comparison to 0.0
is exact rather than within a particular epsilon since you want to ensure that log10_value
is an integer.
EDIT: Since this sparked a bit of controversy due to log10
possibly being imprecise and the generic understanding that you shouldn't compare doubles without an epsilon, here's a more precise way of determining if a double is a power of 10 using only properties of powers of 10 and IEEE 754 doubles.
First, a clarification: a double can represent up to 1E22, as 1e22 has only 52 significant bits. Luckily, 5^22 also only has 52 significant bits, so we can determine if a double is (2*5)^n
for n= [0, 22]
:
bool is_pow10(double value)
{
int exponent;
double mantissa= frexp(value, &exponent);
int exponent_adjustment= exponent/10;
int possible_10_exponent= (exponent - exponent_adjustment)/3;
if (possible_10_exponent>=0 &&
possible_10_exponent<=22)
{
mantissa*= pow(2.0, exponent - possible_10_exponent);
return mantissa==pow(5.0, possible_10_exponent);
}
else
{
return false;
}
}
Since 2^10==1024
, that adds an extra bit of significance that we have to remove from the possible power of 5.