I want to generate a Gaussian distribution in Python with the x and y dimensions denoting position and the z dimension denoting the magnitude of a certain quantity.
The
As of scipy 0.14, you can use scipy.stats.multivariate_normal.pdf()
import numpy as np
from scipy.stats import multivariate_normal
x, y = np.mgrid[-1.0:1.0:30j, -1.0:1.0:30j]
# Need an (N, 2) array of (x, y) pairs.
xy = np.column_stack([x.flat, y.flat])
mu = np.array([0.0, 0.0])
sigma = np.array([.025, .025])
covariance = np.diag(sigma**2)
z = multivariate_normal.pdf(xy, mean=mu, cov=covariance)
# Reshape back to a (30, 30) grid.
z = z.reshape(x.shape)