I am trying to optimize a model with the following two loss functions
def loss_1(pred, weights, logits):
weighted_sparse_ce = kls.SparseCategoricalCrossentro
To expand on Jon's answer. In case you want to still have the benefits of a Keras Model you can expand the model class and write your own custom train_step:
from tensorflow.python.keras.engine import data_adapter
# custom loss function that takes two outputs of the model
# as input parameters which would otherwise not be possible
def custom_loss(gt, x, y):
return tf.reduce_mean(x) + tf.reduce_mean(y)
class CustomModel(keras.Model):
def compile(self, optimizer, my_loss):
super().compile(optimizer)
self.my_loss = my_loss
def train_step(self, data):
data = data_adapter.expand_1d(data)
input_data, gt, sample_weight = data_adapter.unpack_x_y_sample_weight(data)
with tf.GradientTape() as tape:
y_pred = self(input_data, training=True)
loss_value = self.my_loss(gt, y_pred[0], y_pred[1])
grads = tape.gradient(loss_value, self.trainable_variables)
self.optimizer.apply_gradients(zip(grads, self.trainable_variables))
return {"loss_value": loss_value}
...
model = CustomModel(inputs=input_tensor0, outputs=[x, y])
model.compile(optimizer=tf.keras.optimizers.Adam(), my_loss=custom_loss)