Suppose you take the strings \'a\' and \'z\' and list all the strings that come between them in alphabetical order: [\'a\',\'b\',\'c\' ... \'x\',\'y\',\'z\']. Take the midpoint
This version thinks 'abc' is a fraction like 0.abc. In this approach space is zero and a valid input/output.
MAX_ITER = 10
letters = " abcdefghijklmnopqrstuvwxyz"
def to_double(name):
d = 0
for i, ch in enumerate(name):
idx = letters.index(ch)
d += idx * len(letters) ** (-i - 1)
return d
def from_double(d):
name = ""
for i in range(MAX_ITER):
d *= len(letters)
name += letters[int(d)]
d -= int(d)
return name
def avg(w1, w2):
w1 = to_double(w1)
w2 = to_double(w2)
return from_double((w1 + w2) * 0.5)
print avg('a', 'a') # 'a'
print avg('a', 'aa') # 'a mmmmmmmm'
print avg('aa', 'aa') # 'a zzzzzzzz'
print avg('car', 'duck') # 'cxxemmmmmm'
Unfortunately, the naïve algorithm is not able to detect the periodic 'z's, this would be something like 0.99999 in decimal; therefore 'a zzzzzzzz' is actually 'aa' (the space before the 'z' periodicity must be increased by one.
In order to normalise this, you can use the following function
def remove_z_period(name):
if len(name) != MAX_ITER:
return name
if name[-1] != 'z':
return name
n = ""
overflow = True
for ch in reversed(name):
if overflow:
if ch == 'z':
ch = ' '
else:
ch=letters[(letters.index(ch)+1)]
overflow = False
n = ch + n
return n
print remove_z_period('a zzzzzzzz') # 'aa'