Suppose an array a.shape == (N, M)
and a vector v.shape == (N,)
. The goal is to compute argmin
of abs
of v
subtr
Inspired by this post, we can leverage np.searchsorted -
def find_closest(a, v):
sidx = v.argsort()
v_s = v[sidx]
idx = np.searchsorted(v_s, a)
idx[idx==len(v)] = len(v)-1
idx0 = (idx-1).clip(min=0)
m = np.abs(a-v_s[idx]) >= np.abs(v_s[idx0]-a)
m[idx==0] = 0
idx[m] -= 1
out = sidx[idx]
return out
Some more perf. boost with numexpr
on large datasets :
import numexpr as ne
def find_closest_v2(a, v):
sidx = v.argsort()
v_s = v[sidx]
idx = np.searchsorted(v_s, a)
idx[idx==len(v)] = len(v)-1
idx0 = (idx-1).clip(min=0)
p1 = v_s[idx]
p2 = v_s[idx0]
m = ne.evaluate('(idx!=0) & (abs(a-p1) >= abs(p2-a))', {'p1':p1, 'p2':p2, 'idx':idx})
idx[m] -= 1
out = sidx[idx]
return out
Timings
Setup :
N,M = 500,100000
a = np.random.rand(N,M)
v = np.random.rand(N)
In [22]: %timeit find_closest_v2(a, v)
4.35 s ± 21.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [23]: %timeit find_closest(a, v)
4.69 s ± 173 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)