efficient algorithm instead of looping

后端 未结 3 2178
深忆病人
深忆病人 2021-02-15 13:21

I have a data set where each samples has a structure similar to this

X=[ [[],[],[],[]], [[],[]] , [[],[],[]] ,[[][]]]

for example:



        
3条回答
  •  走了就别回头了
    2021-02-15 13:56

    You can also bypass the need for itertools.product by directly doing the dot product on inner matrices:

    def calc_matrix(l1, l2):
        return np.array(l1).dot(np.array(l2).T).sum()
    
    def kernel(x1, x2):
        return sum(
           calc_matrix(l1, l2)
           for l1, l2 in zip(x1, x2)
        )
    

    Edit:

    On short lists (less than a few thousand elements) this will be faster than Claudiu's (awesome) answer. His will scale better above these numbers:

    Using Claudiu's benchmarks:

    # len(l1) == 500
    
    In [9]: %timeit calc_matrix(l1, l2)
    10 loops, best of 3: 8.11 ms per loop
    
    In [10]: %timeit calc_fast(l1, l2)
    10 loops, best of 3: 14.2 ms per loop
    
    # len(l2) == 5000
    
    In [19]: %timeit calc_matrix(l1, l2)
    10 loops, best of 3: 61.2 ms per loop
    
    In [20]: %timeit calc_fast(l1, l2)
    10 loops, best of 3: 56.7 ms per loop
    

提交回复
热议问题