Python : Ramer-Douglas-Peucker (RDP) algorithm with number of points instead of epsilon

后端 未结 1 1910
孤独总比滥情好
孤独总比滥情好 2021-02-15 11:42

I would like to modify this following python script for RDP algorithm with the purpose of not using epsilon but to choose the number of points I want to keep at the final :

1条回答
  •  囚心锁ツ
    2021-02-15 12:11

    Ported JS code from the link above to Python [2.7]:

    # -*- coding: utf-8 -*-
    
    import math
    import time
    
    
    def timenow():
        return int(time.time() * 1000)
    
    def sqr(x):
        return x*x
    
    def distSquared(p1, p2):
        return sqr(p1[0] - p2[0]) + sqr(p1[1] - p2[1])
    
    class Line(object):
        def __init__(self, p1, p2):
            self.p1 = p1
            self.p2 = p2
            self.lengthSquared = distSquared(self.p1, self.p2)
    
        def getRatio(self, point):
            segmentLength = self.lengthSquared
            if segmentLength == 0:
                return distSquared(point, p1);
            return ((point[0] - self.p1[0]) * (self.p2[0] - self.p1[0]) + \
            (point[1] - self.p1[1]) * (self.p2[1] - self.p1[1])) / segmentLength
    
        def distanceToSquared(self, point):
            t = self.getRatio(point)
    
            if t < 0:
                return distSquared(point, self.p1)
            if t > 1:
                return distSquared(point, self.p2)
    
            return distSquared(point, [
                self.p1[0] + t * (self.p2[0] - self.p1[0]),
                self.p1[1] + t * (self.p2[1] - self.p1[1])
            ])
    
        def distanceTo(self, point):
            return math.sqrt(self.distanceToSquared(point))
    
    
    def simplifyDouglasPeucker(points, pointsToKeep):
        weights = []
        length = len(points)
    
        def douglasPeucker(start, end):
            if (end > start + 1):
                line = Line(points[start], points[end])
                maxDist = -1
                maxDistIndex = 0
    
                for i in range(start + 1, end):
                    dist = line.distanceToSquared(points[i])
                    if dist > maxDist:
                        maxDist = dist
                        maxDistIndex = i
    
                weights.insert(maxDistIndex, maxDist)
    
                douglasPeucker(start, maxDistIndex)
                douglasPeucker(maxDistIndex, end)
    
        douglasPeucker(0, length - 1)
        weights.insert(0, float("inf"))
        weights.append(float("inf"))
    
        weightsDescending = weights
        weightsDescending = sorted(weightsDescending, reverse=True)
    
        maxTolerance = weightsDescending[pointsToKeep - 1]
        result = [
            point for i, point in enumerate(points) if weights[i] >= maxTolerance
        ]
    
        return result
    

    0 讨论(0)
提交回复
热议问题