I have a data frame with 900,000 rows and 11 columns in R. The column names and types are as follows:
column name: date / mcode / mname / ycode / yname / yissue
Google wasn't super helpful when I tried to find an answer to a similar question. I thought I would share my solution below using the library(janitor)
package with split()
, and purrr::map_df()
.
My use case was to run a script that would grab CC expenses from many different people to be reviewed by a person.
library(janitor)
library(purrr)
library(dplyr)
mtcars %>%
split(.[,"cyl"]) %>% ## splits each change in cyl into a list of dataframes
map_df(., janitor::adorn_totals)
mpg cyl disp hp drat wt qsec vs am gear carb
22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
26 4 120.3 91 4.43 2.140 16.70 0 1 5 2
30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Total 44 1156.5 909 44.78 25.143 210.51 10 8 45 17
21 6 160.0 110 3.90 2.620 16.46 0 1 4 4
21 6 160.0 110 3.90 2.875 17.02 0 1 4 4
21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Total 42 1283.2 856 25.10 21.820 125.84 4 3 27 24
18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
15 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Total 112 4943.4 2929 45.21 55.989 234.81 0 2 46 49
# if you're sending the output to be reviewed by a person, add a row!
mtcars %>%
split(.[,"cyl"]) %>%
map_df(., ~janitor::adorn_totals(.x) %>%
dplyr::add_row()) %>%
write.csv(., "demo.csv")