I have to design an algorithm under the additional homework. This algorithm have to compress binary tree by transforming it into DAG by removing repetitive subtrees and redirect
This is a problem commonly solved to do common sub-expression elimination in programming languages.
The approach is as follows (and is easily generalized to more than 2 children in a node):
Algorithm (Assumes mutable tree structure; You can easily build a new tree along the way):
MakeDAG(tree):
HASH = a new hash-table-based dictionary
foreach subtree NODE in the tree // traverse this however you like
if NODE is in HASH
replace NODE with HASH[NODE]
else
HASH[NODE] = N // insert the current node, N, in the dictionary
To compute the hash code for a node, you need to recursively compute the hash nodes until you reach the leaves of the tree.
Simply calculating these hash codes naively will bump up your runtime to O(n^2).
It is crucial that you store the results on your way down the tree to avoid repeated recursive calls and to improve the runtime to O(n).