I wrote a method to calculate the cosine distance between two arrays:
def cosine_distance(a, b):
if len(a) != len(b):
return False
numerator = 0
(I originally thought) you're not going to speed it up a lot without breaking out to C (like numpy or scipy) or changing what you compute. But here's how I'd try that, anyway:
from itertools import imap
from math import sqrt
from operator import mul
def cosine_distance(a, b):
assert len(a) == len(b)
return 1 - (sum(imap(mul, a, b))
/ sqrt(sum(imap(mul, a, a))
* sum(imap(mul, b, b))))
It's roughly twice as fast in Python 2.6 with 500k-element arrays. (After changing map to imap, following Jarret Hardie.)
Here's a tweaked version of the original poster's revised code:
from itertools import izip
def cosine_distance(a, b):
assert len(a) == len(b)
ab_sum, a_sum, b_sum = 0, 0, 0
for ai, bi in izip(a, b):
ab_sum += ai * bi
a_sum += ai * ai
b_sum += bi * bi
return 1 - ab_sum / sqrt(a_sum * b_sum)
It's ugly, but it does come out faster. . .
Edit: And try Psyco! It speeds up the final version by another factor of 4. How could I forget?