I\'m using Keras with Tensorflow backend and looking at nvidia-smi is not sufficient to understand how much memory current network architecture need because seems l
nvidia-smi
You can still use nvidia-smi after telling TensorFlow not to reserve all memory of the GPU, but to grow this reservation on demand:
config = tf.ConfigProto() config.gpu_options.allow_growth = True keras.backend.tensorflow_backend.set_session(tf.Session(config=config))