sklearn: User defined cross validation for time series data

后端 未结 2 1224
执念已碎
执念已碎 2021-02-14 10:52

I\'m trying to solve a machine learning problem. I have a specific dataset with time-series element. For this problem I\'m using well-known python library - sklea

2条回答
  •  小鲜肉
    小鲜肉 (楼主)
    2021-02-14 11:45

    You can obtain the desired cross-validation splits without using sklearn. Here's an example

    import numpy as np
    
    from sklearn.svm import SVR
    from sklearn.feature_selection import RFECV
    
    # Generate some data.
    N = 10
    X_train = np.random.randn(N, 3)
    y_train = np.random.randn(N)
    
    # Define the splits.
    idxs = np.arange(N)
    cv_splits = [(idxs[:i], idxs[i:]) for i in range(1, N)]
    
    # Create the RFE object and compute a cross-validated score.
    svr = SVR(kernel="linear")
    rfecv = RFECV(estimator=svr, step=1, cv=cv_splits)
    rfecv.fit(X_train, y_train)
    

提交回复
热议问题