Generating a numpy array with all combinations of numbers that sum to less than a given number

后端 未结 2 2189
隐瞒了意图╮
隐瞒了意图╮ 2021-02-14 09:56

There are several elegant examples of using numpy in Python to generate arrays of all combinations. For example the answer here: Using numpy to build an array of all combination

2条回答
  •  时光说笑
    2021-02-14 10:22

    Edited

    1. For completeness, I'm adding here the OP's code:

      def partition0(max_range, S):
          K = len(max_range)
          return np.array([i for i in itertools.product(*(range(i+1) for i in max_range)) if sum(i)<=S])
      
    2. The first approach is pure np.indices. It's fast for small input but consumes a lot of memory (OP already pointed out it's not what he meant).

      def partition1(max_range, S):
          max_range = np.asarray(max_range, dtype = int)
          a = np.indices(max_range + 1)
          b = a.sum(axis = 0) <= S
          return (a[:,b].T)
      
    3. Recurrent approach seems to be much better than those above:

      def partition2(max_range, max_sum):
          max_range = np.asarray(max_range, dtype = int).ravel()        
          if(max_range.size == 1):
              return np.arange(min(max_range[0],max_sum) + 1, dtype = int).reshape(-1,1)
          P = partition2(max_range[1:], max_sum)
          # S[i] is the largest summand we can place in front of P[i]            
          S = np.minimum(max_sum - P.sum(axis = 1), max_range[0])
          offset, sz = 0, S.size
          out = np.empty(shape = (sz + S.sum(), P.shape[1]+1), dtype = int)
          out[:sz,0] = 0
          out[:sz,1:] = P
          for i in range(1, max_range[0]+1):
              ind, = np.nonzero(S)
              offset, sz = offset + sz, ind.size
              out[offset:offset+sz, 0] = i
              out[offset:offset+sz, 1:] = P[ind]
              S[ind] -= 1
          return out
      
    4. After a short thought, I was able to take it a bit further. If we know in advance the number of possible partitions, we can allocate enough memory at once. (It's somewhat similar to cartesian in an already linked thread.)

      First, we need a function which counts partitions.

      def number_of_partitions(max_range, max_sum):
          '''
          Returns an array arr of the same shape as max_range, where
          arr[j] = number of admissible partitions for 
                   j summands bounded by max_range[j:] and with sum <= max_sum
          '''
          M = max_sum + 1
          N = len(max_range) 
          arr = np.zeros(shape=(M,N), dtype = int)    
          arr[:,-1] = np.where(np.arange(M) <= min(max_range[-1], max_sum), 1, 0)
          for i in range(N-2,-1,-1):
              for j in range(max_range[i]+1):
                  arr[j:,i] += arr[:M-j,i+1] 
          return arr.sum(axis = 0)
      

      The main function:

      def partition3(max_range, max_sum, out = None, n_part = None):
          if out is None:
              max_range = np.asarray(max_range, dtype = int).ravel()
              n_part = number_of_partitions(max_range, max_sum)
              out = np.zeros(shape = (n_part[0], max_range.size), dtype = int)
      
          if(max_range.size == 1):
              out[:] = np.arange(min(max_range[0],max_sum) + 1, dtype = int).reshape(-1,1)
              return out
      
          P = partition3(max_range[1:], max_sum, out=out[:n_part[1],1:], n_part = n_part[1:])        
          # P is now a useful reference
      
          S = np.minimum(max_sum - P.sum(axis = 1), max_range[0])
          offset, sz  = 0, S.size
          out[:sz,0] = 0
          for i in range(1, max_range[0]+1):
              ind, = np.nonzero(S)
              offset, sz = offset + sz, ind.size
              out[offset:offset+sz, 0] = i
              out[offset:offset+sz, 1:] = P[ind]
              S[ind] -= 1
          return out
      
    5. Some tests:

      max_range = [3, 4, 6, 3, 4, 6, 3, 4, 6]
      for f in [partition0, partition1, partition2, partition3]:
          print(f.__name__ + ':')
          for max_sum in [5, 15, 25]:
              print('Sum %2d: ' % max_sum, end = '')
              %timeit f(max_range, max_sum)
          print()
      
      partition0:
      Sum  5: 1 loops, best of 3: 859 ms per loop
      Sum 15: 1 loops, best of 3: 1.39 s per loop
      Sum 25: 1 loops, best of 3: 3.18 s per loop
      
      partition1:
      Sum  5: 10 loops, best of 3: 176 ms per loop
      Sum 15: 1 loops, best of 3: 224 ms per loop
      Sum 25: 1 loops, best of 3: 403 ms per loop
      
      partition2:
      Sum  5: 1000 loops, best of 3: 809 µs per loop
      Sum 15: 10 loops, best of 3: 62.5 ms per loop
      Sum 25: 1 loops, best of 3: 262 ms per loop
      
      partition3:
      Sum  5: 1000 loops, best of 3: 853 µs per loop
      Sum 15: 10 loops, best of 3: 59.1 ms per loop
      Sum 25: 1 loops, best of 3: 249 ms per loop
      

      And something larger:

      %timeit partition0([3,6] * 5, 20)
      1 loops, best of 3: 11.9 s per loop
      
      %timeit partition1([3,6] * 5, 20)
      The slowest run took 12.68 times longer than the fastest. This could mean that an intermediate result is being cached 
      1 loops, best of 3: 2.33 s per loop
      # MemoryError in another test
      
      %timeit partition2([3,6] * 5, 20)
      1 loops, best of 3: 877 ms per loop
      
      %timeit partition3([3,6] * 5, 20)
      1 loops, best of 3: 739 ms per loop
      

提交回复
热议问题