Suppose someone makes a program to play chess, or solve sudoku. In this kind of program it makes sense to have a tree structure representing game states.
This tree would
Same trick as with a stream -- don't capture the remainder directly, but instead capture a value and a function which yields a remainder. You can add memoization on top of this as necessary.
data UTree a = Leaf a | Branch a (a -> [UTree a])
I'm not in the mood to figure it out precisely at the moment, but this structure arises, I'm sure, naturally as the cofree comonad over a fairly straightforward functor.
Edit
Found it: http://hackage.haskell.org/packages/archive/comonad-transformers/1.6.3/doc/html/Control-Comonad-Trans-Stream.html
Or this is perhaps simpler to understand: http://hackage.haskell.org/packages/archive/streams/0.7.2/doc/html/Data-Stream-Branching.html
In either case, the trick is that your f
can be chosen to be something like data N s a = N (s -> (s,[a]))
for an appropriate s
(s being the type of your state parameter of the stream -- the seed of your unfold, if you will). That might not be exactly correct, but something close should do...
But of course for real work, you can scrap all this and just write the datatype directly as above.
Edit 2
The below code illustrates how this can prevent sharing. Note that even in the version without sharing, there are humps in the profile indicating that the sum and length calls aren't running in constant space. I'd imagine that we'd need an explicit strict accumulation to knock those down.
{-# LANGUAGE DeriveFunctor #-}
import Data.Stream.Branching(Stream(..))
import qualified Data.Stream.Branching as S
import Control.Arrow
import Control.Applicative
import Data.List
data UM s a = UM (s -> Maybe a) deriving Functor
type UStream s a = Stream (UM s) a
runUM s (UM f) = f s
liftUM x = UM $ const (Just x)
nullUM = UM $ const Nothing
buildUStream :: Int -> Int -> Stream (UM ()) Int
buildUStream start end = S.unfold (\x -> (x, go x)) start
where go x
| x < end = liftUM (x + 1)
| otherwise = nullUM
sumUS :: Stream (UM ()) Int -> Int
sumUS x = S.head $ S.scanr (\x us -> maybe 0 id (runUM () us) + x) x
lengthUS :: Stream (UM ()) Int -> Int
lengthUS x = S.head $ S.scanr (\x us -> maybe 0 id (runUM () us) + 1) x
sumUS' :: Stream (UM ()) Int -> Int
sumUS' x = last $ usToList $ liftUM $ S.scanl (+) 0 x
lengthUS' :: Stream (UM ()) Int -> Int
lengthUS' x = last $ usToList $ liftUM $ S.scanl (\acc _ -> acc + 1) 0 x
usToList x = unfoldr (\um -> (S.head &&& S.tail) <$> runUM () um) x
maxNum = 1000000
nums = buildUStream 0 maxNum
numsL :: [Int]
numsL = [0..maxNum]
-- All these need to be run with increased stack to avoid an overflow.
-- This generates an hp file with two humps (i.e. the list is not shared)
main = print $ div (fromIntegral $ sumUS' nums) (fromIntegral $ lengthUS' nums)
-- This generates an hp file as above, and uses somewhat less memory, at the cost of
-- an increased number of GCs. -H helps a lot with that.
-- main = print $ div (fromIntegral $ sumUS nums) (fromIntegral $ lengthUS nums)
-- This generates an hp file with one hump (i.e. the list is shared)
-- main = print $ div (fromIntegral $ sum $ numsL) (fromIntegral $ length $ numsL)