how to save resized images using ImageDataGenerator and flow_from_directory in keras

前端 未结 4 1919
情深已故
情深已故 2021-02-14 06:47

I am resizing my RGB images stored in a folder(two classes) using following code:

from keras.preprocessing.image import ImageDataGenerator
dataset=ImageDataGener         


        
4条回答
  •  野的像风
    2021-02-14 07:15

    Heres a very simple version of saving augmented images of one image wherever you want:

    Step 1. Initialize image data generator

    Here we figure out what changes we want to make to the original image and generate the augmented images
    You can read up about the diff effects here- https://keras.io/preprocessing/image/

    datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1, 
    height_shift_range=0.1,shear_range=0.15, 
    zoom_range=0.1,channel_shift_range = 10, horizontal_flip=True)
    

    Step 2: Here we pick the original image to perform the augmentation on

    read in the image

    image_path = 'C:/Users/Darshil/gitly/Deep-Learning/My 
    Projects/CNN_Keras/test_augment/caty.jpg'
    
    image = np.expand_dims(ndimage.imread(image_path), 0)
    

    step 3: pick where you want to save the augmented images

    save_here = 'C:/Users/Darshil/gitly/Deep-Learning/My 
    Projects/CNN_Keras/test_augment'
    

    Step 4. we fit the original image

    datagen.fit(image)
    

    step 5: iterate over images and save using the "save_to_dir" parameter

    for x, val in zip(datagen.flow(image,                    #image we chose
            save_to_dir=save_here,     #this is where we figure out where to save
             save_prefix='aug',        # it will save the images as 'aug_0912' some number for every new augmented image
            save_format='png'),range(10)) :     # here we define a range because we want 10 augmented images otherwise it will keep looping forever I think
    pass
    

提交回复
热议问题