Im trying to write a function which identifies groups of dates, and measures the size of the group.
I\'ve been doing this procedurally in Python until now but I\'d like
The following query account the weekends and holidays. The query has a provision to include the holidays on-the-fly, though for the purpose of making the query clearer, I just materialized the holidays to an actual table.
CREATE TABLE tx
(n varchar(4), d date);
INSERT INTO tx
(n, d)
VALUES
('Bill', '2006-12-29'), -- Friday
-- 2006-12-30 is Saturday
-- 2006-12-31 is Sunday
-- 2007-01-01 is New Year's Holiday
('Bill', '2007-01-02'), -- Tuesday
('Bill', '2007-01-03'), -- Wednesday
('Bill', '2007-01-04'), -- Thursday
('Bill', '2007-01-05'), -- Friday
-- 2007-01-06 is Saturday
-- 2007-01-07 is Sunday
('Bill', '2007-01-08'), -- Monday
('Bill', '2007-01-09'), -- Tuesday
('Bill', '2012-07-09'), -- Monday
('Bill', '2012-07-10'), -- Tuesday
('Bill', '2012-07-11'); -- Wednesday
create table holiday(d date);
insert into holiday(d) values
('2007-01-01');
/* query should return 7 consecutive good
attendance(from December 29 2006 to January 9 2007) */
/* and 3 consecutive attendance from July 7 2012 to July 11 2012. */
Query:
with first_date as
(
-- get the monday of the earliest date
select dateadd( ww, datediff(ww,0,min(d)), 0 ) as first_date
from tx
)
,shifted as
(
select
tx.n, tx.d,
diff = datediff(day, fd.first_date, tx.d)
- (datediff(day, fd.first_date, tx.d)/7 * 2)
from tx
cross join first_date fd
union
select
xxx.n, h.d,
diff = datediff(day, fd.first_date, h.d)
- (datediff(day, fd.first_date, h.d)/7 * 2)
from holiday h
cross join first_date fd
cross join (select distinct n from tx) as xxx
)
,grouped as
(
select *, grp = diff - row_number() over(partition by n order by d)
from shifted
)
select
d, n, dense_rank() over (partition by n order by grp) as nth_streak
,count(*) over (partition by n, grp) as streak
from grouped
where d not in (select d from holiday) -- remove the holidays
Output:
| D | N | NTH_STREAK | STREAK |
-------------------------------------------
| 2006-12-29 | Bill | 1 | 7 |
| 2007-01-02 | Bill | 1 | 7 |
| 2007-01-03 | Bill | 1 | 7 |
| 2007-01-04 | Bill | 1 | 7 |
| 2007-01-05 | Bill | 1 | 7 |
| 2007-01-08 | Bill | 1 | 7 |
| 2007-01-09 | Bill | 1 | 7 |
| 2012-07-09 | Bill | 2 | 3 |
| 2012-07-10 | Bill | 2 | 3 |
| 2012-07-11 | Bill | 2 | 3 |
Live test: http://www.sqlfiddle.com/#!3/815c5/1
The main logic of the query is to shift all the dates two days back. This is done by dividing the date to 7 and multiplying it by two, then subtracting it from the original number. For example, if a given date falls on 15th, this will be computed as 15/7 * 2 == 4; then subtract 4 from the original number, 15 - 4 == 11. 15 will become the 11th day. Likewise the 8th day becomes the 6th day; 8 - (8/7 * 2) == 6.
Weekends are not in attendance(e.g. 6,7,13,14)
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15
Applying the computation to all the weekday numbers will yield these values:
1 2 3 4 5
6 7 8 9 10
11
For holidays, you need to slot them on attendance, so to the consecutive-ness could be easily determined, then just remove them from the final query. The above attendance yields 11 consecutive good attendance.
Query logic's detailed explanation here: http://www.ienablemuch.com/2012/07/monitoring-perfect-attendance.html