I have two images (see below). These images represent the contours of a pair of cables and were captured using laser based 3D triangulation. The first image is captured with the
Template matching would do the trick here. I played with it a little, hope you find it usuful (Code below):
MAX_DISPARITY = 100;
imgL=double(imread('https://i.stack.imgur.com/y5tOJ.png'));
imgR=double(imread('https://i.stack.imgur.com/L1EQy.png'));
imgRfused = imgR;
minmax = @(v) [min(v) max(v)];
[imgLbw,n]=bwlabel(imgL);
nBlobs=2;
a=arrayfun(@(i) sum(imgLbw(:)==i),1:n);
[~,indx]=sort(a,'descend');
imgLbwC=bsxfun(@eq,imgLbw,permute(indx(1:nBlobs),[3 1 2]));
imgLbwC =bsxfun(@times,imgLbwC,2.^permute(0:nBlobs-1,[3 1 2]));
imgLbwC = sum(imgLbwC ,3);
src = zeros(nBlobs,4);
dst = zeros(nBlobs,4);
for i=1:nBlobs
[y,x]=find(imgLbwC==i);
mmx = minmax(x);
mmy = minmax(y);
ker = imgL(mmy(1):mmy(2),mmx(1):mmx(2));
[yg,xg]=ndgrid(mmy(1):mmy(2),mmx(1):mmx(2));
src(i,:)=[mmx(1) mmy(1) fliplr(size(ker))];
imgR_ = imgR(:,mmx(1)-MAX_DISPARITY:mmx(2)+MAX_DISPARITY);
c=conv2(imgR_ ,rot90(double(ker),2),'valid')./sqrt(conv2(imgR_.^2,ones(size(ker)),'valid'));
[yy,xx]=find(c==max(c(:)),1);
dst(i,:)=[src(i,1:2)+[xx yy-mmy(1)]+[-MAX_DISPARITY,0] fliplr(size(ker))];
imgRfused(dst(i,2):dst(i,2)+dst(i,4),dst(i,1):dst(i,1)+dst(i,3)) = max(imgRfused(dst(i,2):dst(i,2)+dst(i,4),dst(i,1):dst(i,1)+dst(i,3)),imgL(src(i,2):src(i,2)+src(i,4),src(i,1):src(i,1)+src(i,3)));
end
imagesc(imgRfused);
axis image
colormap gray