Suppose that I have two 2-D arrays as follows:
array([[3, 3, 1, 0],
[2, 3, 1, 3],
[0, 2, 3, 1],
[1, 0, 2, 3],
[3, 1, 0, 2]], dtype=in
This is an all numpy
solution - not that is necessarily better than an iterative Python one. It still has to look at all combinations.
In [53]: np.array(np.all((x[:,None,:]==y[None,:,:]),axis=-1).nonzero()).T.tolist()
Out[53]: [[0, 4], [2, 1], [3, 2], [4, 3]]
The intermediate array is (5,5,4)
. The np.all
reduces it to:
array([[False, False, False, False, True],
[False, False, False, False, False],
[False, True, False, False, False],
[False, False, True, False, False],
[False, False, False, True, False]], dtype=bool)
The rest is just extracting the indices where this is True
In crude tests, this times at 47.8 us; the other answer with the L1
dictionary at 38.3 us; and a third with a double loop at 496 us.