I recently inquired about why PatternTest
was causing a multitude of needless evaluations: PatternTest not optimized? Leonid replied that it is necessary for what
MatchQ
unpacks for these kinds of tests. The reason is that no special case for this has been implemented. In principle it could contain anything.
On["Packing"]
MatchQ[list, {x_Integer, y__}] // Timing
MatchQ[list, {x__Integer, y__}] // Timing
Improving this is very tricky - if you break the pattern matcher you have a serious problem.
Edit 1:
It is true that the unpacking is not the cause for the O(n^2) complexity. It does, however, show that for the MatchQ[list, {x__Integer, y__}]
part the code goes to another part of the algorithm (which needs the lists to be unpacked). Some other things to note: This complexity arises only if both patterns are __
if either one of them is _
the algorithm has a better complexity.
The algorithm then goes through all n*n potential matches and there seems no early bailout. Presumably because other patters could be constructed that would need this complexity - The issue is that the above pattern forces the matcher to a very general algorithm.
I then was hoping for MatchQ[list, {Shortest[x__Integer], __}]
and friends but to no avail.
So, my two cents: either use a different pattern (and have On["Packing"] to see if it goes to the general matcher) or do a pre-check DeveloperPackedArrayQ[expr] && Head[expr[[1]]]===Integer
or some such.