Am a bit confused about the relationship between undecidable problems and NP hard problems. Whether NP hard problems are a subset of undecidable problems, or are they just the s
Undecidable = unsolvable for some inputs. No matter how much (finite) time you give your algorithm, it will always be wrong on some input.
NP-hard ~= super-polynomial running time (assuming P != NP). That's hand-wavy, but basically NP-hard means it is at least as hard as the hardest problem in NP.
There are certainly problems that are NP-hard which are not undecidable (= are decidable). Any NP-complete problem would be one of them, say SAT.
Are there undecidable problems which are not NP-hard? I don't think so, but it isn't easy to rule it out - I don't see an obvious argument that there must be a reduction from SAT to all possible undecidable problems. There could be some weird undecidable problems which aren't very useful. But the standard undecidable problems (the halting problem, say) are NP-hard.