I would like to have a shared struct between threads. The struct has many fields that are never modified and a HashMap
, which is. I don\'t want to lock the whole
Suppose the key of the data is map-able to a u8
You can have Arc
When you initialize the data structure you populate all the first level map before putting it in Arc (it will be immutable after initialization)
When you want a value from the map you will need to do a double get, something like:
data.get(&map_to_u8(&key)).unwrap().lock().expect("poison").get(&key)
where the unwrap
is safe because we initialized the first map with all the value.
to write in the map something like:
data.get(&map_to_u8(id)).unwrap().lock().expect("poison").entry(id).or_insert_with(|| value);
It's easy to see contention is reduced because we now have 256 Mutex and the probability of multiple threads asking the same Mutex is low.
@Shepmaster example with 100 threads takes about 10s on my machine, the following example takes a little more than 1 second.
use std::{
collections::HashMap,
sync::{Arc, Mutex, RwLock},
thread,
time::Duration,
};
fn main() {
let mut inner = HashMap::new( );
for i in 0..=u8::max_value() {
inner.insert(i, Mutex::new(HashMap::new()));
}
let data = Arc::new(inner);
let threads: Vec<_> = (0..100)
.map(|i| {
let data = Arc::clone(&data);
thread::spawn(move || worker_thread(i, data))
})
.collect();
for t in threads {
t.join().expect("Thread panicked");
}
println!("{:?}", data);
}
fn worker_thread(id: u8, data: Arc>>>> ) {
loop {
// first unwrap is safe to unwrap because we populated for every `u8`
if let Some(element) = data.get(&id).unwrap().lock().expect("poison").get(&id) {
let mut element = element.lock().expect("Mutex poisoned");
// Perform our normal work updating a specific element.
// The entire HashMap only has a read lock, which
// means that other threads can access it.
*element += 1;
thread::sleep(Duration::from_secs(1));
return;
}
// If we got this far, the element doesn't exist
// Get rid of our read lock and switch to a write lock
// You want to minimize the time we hold the writer lock
// We use HashMap::entry to handle the case where another thread
// inserted the same key while where were unlocked.
thread::sleep(Duration::from_millis(50));
data.get(&id).unwrap().lock().expect("poison").entry(id).or_insert_with(|| Mutex::new(0));
// Let the loop start us over to try again
}
}