How to use tensorflow feature_columns as input to a keras model

后端 未结 4 1920
陌清茗
陌清茗 2021-02-13 04:16

Tensorflow\'s feature_columns API is quite useful for non-numerical feature processing. However, the current API doc is more about using feature_columns with tensorflow Estimato

4条回答
  •  北恋
    北恋 (楼主)
    2021-02-13 04:46

    The behavior you desire could be achieved and it's able to combine tf.feature_column and keras functional API. And, actually, is not mentioned in TF docs.

    This works at least in TF 2.0.0-beta1, but may being changed or even simplified in further releases.

    Please check out issue in TensorFlow github repository Unable to use FeatureColumn with Keras Functional API #27416. There you will find useful comments about tf.feature_column and Keras Functional API.

    Because you ask about general approach I would just copy the snippet with example from the link above. update: the code below should work

    from __future__ import absolute_import, division, print_function
    
    import numpy as np
    import pandas as pd
    
    #!pip install tensorflow==2.0.0-alpha0
    import tensorflow as tf
    
    from tensorflow import feature_column
    from tensorflow import keras
    from tensorflow.keras import layers
    from sklearn.model_selection import train_test_split
    
    URL = 'https://storage.googleapis.com/applied-dl/heart.csv'
    dataframe = pd.read_csv(URL, nrows = 10000)
    dataframe.head()
    
    train, test = train_test_split(dataframe, test_size=0.2)
    train, val = train_test_split(train, test_size=0.2)
    print(len(train), 'train examples')
    print(len(val), 'validation examples')
    print(len(test), 'test examples')
    
    # Define method to create tf.data dataset from Pandas Dataframe
    # This worked with tf 2.0 but does not work with tf 2.2
    def df_to_dataset_tf_2_0(dataframe, label_column, shuffle=True, batch_size=32):
        dataframe = dataframe.copy()
        #labels = dataframe.pop(label_column)
        labels = dataframe[label_column]
    
        ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))
        if shuffle:
            ds = ds.shuffle(buffer_size=len(dataframe))
        ds = ds.batch(batch_size)
        return ds
    
    def df_to_dataset(dataframe, label_column, shuffle=True, batch_size=32):
        dataframe = dataframe.copy()
        labels = dataframe.pop(label_column)
        #labels = dataframe[label_column]
    
        ds = tf.data.Dataset.from_tensor_slices((dataframe.to_dict(orient='list'), labels))
        if shuffle:
            ds = ds.shuffle(buffer_size=len(dataframe))
        ds = ds.batch(batch_size)
        return ds
    
    
    batch_size = 5 # A small batch sized is used for demonstration purposes
    train_ds = df_to_dataset(train, label_column = 'target', batch_size=batch_size)
    val_ds = df_to_dataset(val,label_column = 'target',  shuffle=False, batch_size=batch_size)
    test_ds = df_to_dataset(test, label_column = 'target', shuffle=False, batch_size=batch_size)
    
    age = feature_column.numeric_column("age")
    
    feature_columns = []
    feature_layer_inputs = {}
    
    # numeric cols
    for header in ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'slope', 'ca']:
      feature_columns.append(feature_column.numeric_column(header))
      feature_layer_inputs[header] = tf.keras.Input(shape=(1,), name=header)
    
    # bucketized cols
    age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35])
    feature_columns.append(age_buckets)
    
    # indicator cols
    thal = feature_column.categorical_column_with_vocabulary_list(
          'thal', ['fixed', 'normal', 'reversible'])
    thal_one_hot = feature_column.indicator_column(thal)
    feature_columns.append(thal_one_hot)
    feature_layer_inputs['thal'] = tf.keras.Input(shape=(1,), name='thal', dtype=tf.string)
    
    # embedding cols
    thal_embedding = feature_column.embedding_column(thal, dimension=8)
    feature_columns.append(thal_embedding)
    
    # crossed cols
    crossed_feature = feature_column.crossed_column([age_buckets, thal], hash_bucket_size=1000)
    crossed_feature = feature_column.indicator_column(crossed_feature)
    feature_columns.append(crossed_feature)
    
    
    
    feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
    feature_layer_outputs = feature_layer(feature_layer_inputs)
    
    x = layers.Dense(128, activation='relu')(feature_layer_outputs)
    x = layers.Dense(64, activation='relu')(x)
    
    baggage_pred = layers.Dense(1, activation='sigmoid')(x)
    
    model = keras.Model(inputs=[v for v in feature_layer_inputs.values()], outputs=baggage_pred)
    
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    
    model.fit(train_ds)
    

提交回复
热议问题