There is a small snippet about loading sparse data but I have no idea how to use it.
SparseTensors don\'t play well with queues. If you use SparseTensors
For libsvm format you can write and parse like below, if you want sparse tensor result(as opposed to dense tensor result using padding strategy)
#---write
_float_feature = lambda v: tf.train.Feature(float_list=tf.train.FloatList(value=v))
_int_feature = lambda v: tf.train.Feature(int64_list=tf.train.Int64List(value=v))
indexes = []
values = []
for item in l[start:]:
index,value = item.split(':')
indexes.append(int(index))
values.append(float(value))
example = tf.train.Example(features=tf.train.Features(feature={
'label': _int_feature([label]),
'num_features': _int_feature([num_features]),
'index': _int_feature(indexes),
'value': _float_feature(values)
}))
writer.write(example.SerializeToString())
#---read
def decode(batch_serialized_examples):
features = tf.parse_example(
batch_serialized_examples,
features={
'label' : tf.FixedLenFeature([], tf.int64),
'index' : tf.VarLenFeature(tf.int64),
'value' : tf.VarLenFeature(tf.float32),
})
label = features['label']
index = features['index']
value = features['value']
return label, index, value
So by this way you will get label as dense tensor, index and value as two sparse tensors, you can see one self contained example of writing libsvm format to TFRecord and read it for mlp classification from
https://github.com/chenghuige/tensorflow-example/tree/master/examples/tf-record/sparse https://github.com/chenghuige/tensorflow-example/tree/master/examples/text-classification