There have been several questions posted to SO about floating-point representation. For example, the decimal number 0.1 doesn\'t have an exact binary representation, so it\'
In the equation
2^x = y ;
x = log(y) / log(2)
Hence, I was just wondering if we could have a logarithmic base system for binary like,
2^1, 2^0, 2^(log(1/2) / log(2)), 2^(log(1/4) / log(2)), 2^(log(1/8) / log(2)),2^(log(1/16) / log(2)) ........
That might be able to solve the problem, so if you wanted to write something like 32.41 in binary, that would be
2^5 + 2^(log(0.4) / log(2)) + 2^(log(0.01) / log(2))
Or
2^5 + 2^(log(0.41) / log(2))