In Project Euler\'s problem 67 there is a triangle given and it contains 100 rows. For e.g.
5
9 6
4 6 8
0 7 1 5
I.e. 5 + 9 + 6 + 7
You want to store this as a directed acyclic graph. The nodes are the entries of your triangular array, and there is an arrow from i
to j
iff j
is one row lower and immediately left or right of i
.
Now you want to find the maximum weight directed path (sum of the vertex weights) in this graph. In general, this problem is NP-complete, however, as templatetypedef points out, there are efficient algorithms for DAGs; here's one:
algorithm dag-longest-path is
input:
Directed acyclic graph G
output:
Length of the longest path
length_to = array with |V(G)| elements of type int with default value 0
for each vertex v in topOrder(G) do
for each edge (v, w) in E(G) do
if length_to[w] <= length_to[v] + weight(G,(v,w)) then
length_to[w] = length_to[v] + weight(G, (v,w))
return max(length_to[v] for v in V(G))
To make this work, you will need to weight the length
of the path to be the size of the target node (since all paths include the source, this is fine).