mask only where consecutive nans exceeds x

前端 未结 2 1901
野趣味
野趣味 2021-02-11 04:39

I was answering a question about pandas interpolation method. The OP wanted to use only interpolate where the number of consecutive np.nans was one. The lim

2条回答
  •  忘掉有多难
    2021-02-11 05:21

    I really like numba for such easy to grasp but hard to "numpyfy" problems! Even though that package might be a bit too heavy for most libraries it allows to write such "python"-like functions without loosing too much speed:

    import numpy as np
    import numba as nb
    import math
    
    @nb.njit
    def mask_nan_if_consecutive(arr, limit):  # I'm not good at function names :(
        result = np.ones_like(arr)
        cnt = 0
        for idx in range(len(arr)):
            if math.isnan(arr[idx]):
                cnt += 1
                # If we just reached the limit we need to backtrack,
                # otherwise just mask current.
                if cnt == limit:
                    for subidx in range(idx-limit+1, idx+1):
                        result[subidx] = 0
                elif cnt > limit:
                    result[idx] = 0
            else:
                cnt = 0
    
        return result
    

    At least if you worked with pure-python this should be quite easy to understand and it should work:

    >>> a = np.array([1, np.nan, np.nan, np.nan, 1, np.nan, 1, 1, np.nan, np.nan, 1, 1])
    >>> mask_nan_if_consecutive(a, 1)
    array([ 1.,  0.,  0.,  0.,  1.,  0.,  1.,  1.,  0.,  0.,  1.,  1.])
    >>> mask_nan_if_consecutive(a, 2)
    array([ 1.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  0.,  0.,  1.,  1.])
    >>> mask_nan_if_consecutive(a, 3)
    array([ 1.,  0.,  0.,  0.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
    >>> mask_nan_if_consecutive(a, 4)
    array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
    

    But the really nice thing about @nb.njit-decorator is, that this function will be fast:

    a = np.array([1, np.nan, np.nan, np.nan, 1, np.nan, 1, 1, np.nan, np.nan, 1, 1])
    i = 2
    
    res1 = mask_nan_if_consecutive(a, i)
    res2 = mask_knans(a, i)
    np.testing.assert_array_equal(res1, res2)
    
    %timeit mask_nan_if_consecutive(a, i)  # 100000 loops, best of 3: 6.03 µs per loop
    %timeit mask_knans(a, i)               # 1000 loops, best of 3: 302 µs per loop
    

    So for short arrays this is approximatly 50 times faster, even though the difference gets lower it's still faster for longer arrays:

    a = np.array([1, np.nan, np.nan, np.nan, 1, np.nan, 1, 1, np.nan, np.nan, 1, 1]*100000)
    i = 2
    
    %timeit mask_nan_if_consecutive(a, i)  # 10 loops, best of 3: 20.9 ms per loop
    %timeit mask_knans(a, i)               # 10 loops, best of 3: 154 ms per loop
    

提交回复
热议问题