I have two density curves plotted using this:
Network <- Mydf$Networks
quartiles <- quantile(Mydf$Avg.Position, probs=c(25,50,75)/100)
density <- ggpl
Calculate the density seperately and plot that one to start with. Then you can use basic arithmetics to get the estimate. An integration is approximated by adding together the area of a set of little squares. I use the mean method for that. the length is the difference between two x-values, the height is the mean of the y-value at the begin and at the end of the interval. I use the rollmeans function in the zoo package, but this can be done using the base package too.
require(zoo)
X <- rnorm(100)
# calculate the density and check the plot
Y <- density(X) # see ?density for parameters
plot(Y$x,Y$y, type="l") #can use ggplot for this too
# set an Avg.position value
Avg.pos <- 1
# construct lengths and heights
xt <- diff(Y$x[Y$x
This gives you a good approximation up to 3 digits behind the decimal sign. If you know the density function, take a look at ?integrate