I have a dictionary which looks like this: di = {1: \"A\", 2: \"B\"}
I would like to apply it to the \"col1\" column of a dataframe similar to:
There is a bit of ambiguity in your question. There are at least three two interpretations:
di
refer to index valuesdi
refer to df['col1']
valuesdi
refer to index locations (not the OP's question, but thrown in for fun.)Below is a solution for each case.
Case 1:
If the keys of di
are meant to refer to index values, then you could use the update
method:
df['col1'].update(pd.Series(di))
For example,
import pandas as pd
import numpy as np
df = pd.DataFrame({'col1':['w', 10, 20],
'col2': ['a', 30, np.nan]},
index=[1,2,0])
# col1 col2
# 1 w a
# 2 10 30
# 0 20 NaN
di = {0: "A", 2: "B"}
# The value at the 0-index is mapped to 'A', the value at the 2-index is mapped to 'B'
df['col1'].update(pd.Series(di))
print(df)
yields
col1 col2
1 w a
2 B 30
0 A NaN
I've modified the values from your original post so it is clearer what update
is doing.
Note how the keys in di
are associated with index values. The order of the index values -- that is, the index locations -- does not matter.
Case 2:
If the keys in di
refer to df['col1']
values, then @DanAllan and @DSM show how to achieve this with replace
:
import pandas as pd
import numpy as np
df = pd.DataFrame({'col1':['w', 10, 20],
'col2': ['a', 30, np.nan]},
index=[1,2,0])
print(df)
# col1 col2
# 1 w a
# 2 10 30
# 0 20 NaN
di = {10: "A", 20: "B"}
# The values 10 and 20 are replaced by 'A' and 'B'
df['col1'].replace(di, inplace=True)
print(df)
yields
col1 col2
1 w a
2 A 30
0 B NaN
Note how in this case the keys in di
were changed to match values in df['col1']
.
Case 3:
If the keys in di
refer to index locations, then you could use
df['col1'].put(di.keys(), di.values())
since
df = pd.DataFrame({'col1':['w', 10, 20],
'col2': ['a', 30, np.nan]},
index=[1,2,0])
di = {0: "A", 2: "B"}
# The values at the 0 and 2 index locations are replaced by 'A' and 'B'
df['col1'].put(di.keys(), di.values())
print(df)
yields
col1 col2
1 A a
2 10 30
0 B NaN
Here, the first and third rows were altered, because the keys in di
are 0
and 2
, which with Python's 0-based indexing refer to the first and third locations.