As mentioned in the question, Multiprocessing in Python is the only real way to achieve true parallelism. Multithreading cannot achieve this because the GIL prevents threads from running in parallel.
As a consequence, threading may not always be useful in Python, and in fact, may even result in worse performance depending on what you are trying to achieve. For example, if you are performing a CPU-bound task such as decompressing gzip files or 3D-rendering (anything CPU intensive) then threading may actually hinder your performance rather than help. In such a case, you would want to use Multiprocessing as only this method actually runs in parallel and will help distribute the weight of the task at hand. There could be some overhead to this since Multiprocessing involves copying the memory of a script into each subprocess which may cause issues for larger-sized applications.
However, Multithreading becomes useful when your task is IO-bound. For example, if most of your task involves waiting on API-calls, you would use Multithreading because why not start up another request in another thread while you wait, rather than have your CPU sit idly by.
TL;DR
- Multithreading is concurrent and is used for IO-bound tasks
- Multiprocessing achieves true parallelism and is used for CPU-bound tasks