Is it possible in OpenCV to plot local curvature as a heat-map representing an object's “pointiness”?

前端 未结 2 1300
滥情空心
滥情空心 2021-02-09 18:03

Given a thresholded image of blobs that you can detect and draw contours around, is it possible when drawing the contour to represent the local curvature as a heat-map?

<
2条回答
  •  走了就别回头了
    2021-02-09 18:41

    EDIT: Fixed a bug in the previous version.

    I used angle between the gradient vectors at the ith and (i + n)th point on the contour as the score to determine the pointiness of a point. Code and results below.

    import numpy as np
    import cv2
    import pylab as pl
    
    
    def compute_pointness(I, n=5):
        # Compute gradients
        # GX = cv2.Sobel(I, cv2.CV_32F, 1, 0, ksize=5, scale=1)
        # GY = cv2.Sobel(I, cv2.CV_32F, 0, 1, ksize=5, scale=1)
        GX = cv2.Scharr(I, cv2.CV_32F, 1, 0, scale=1)
        GY = cv2.Scharr(I, cv2.CV_32F, 0, 1, scale=1)
        GX = GX + 0.0001  # Avoid div by zero
    
        # Threshold and invert image for finding contours
        _, I = cv2.threshold(I, 100, 255, cv2.THRESH_BINARY_INV)
        # Pass in copy of image because findContours apparently modifies input.
        C, H = cv2.findContours(I.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        heatmap = np.zeros_like(I, dtype=np.float)
        pointed_points = []
        for contour in C:
            contour = contour.squeeze()
            measure = []
            N = len(contour)
            for i in xrange(N):
                x1, y1 = contour[i]
                x2, y2 = contour[(i + n) % N]
    
                # Angle between gradient vectors (gx1, gy1) and (gx2, gy2)
                gx1 = GX[y1, x1]
                gy1 = GY[y1, x1]
                gx2 = GX[y2, x2]
                gy2 = GY[y2, x2]
                cos_angle = gx1 * gx2 + gy1 * gy2
                cos_angle /= (np.linalg.norm((gx1, gy1)) * np.linalg.norm((gx2, gy2)))
                angle = np.arccos(cos_angle)
                if cos_angle < 0:
                    angle = np.pi - angle
    
                x1, y1 = contour[((2*i + n) // 2) % N]  # Get the middle point between i and (i + n)
                heatmap[y1, x1] = angle  # Use angle between gradient vectors as score
                measure.append((angle, x1, y1, gx1, gy1))
    
            _, x1, y1, gx1, gy1 = max(measure)  # Most pointed point for each contour
    
            # Possible to filter for those blobs with measure > val in heatmap instead.
            pointed_points.append((x1, y1, gx1, gy1))
    
        heatmap = cv2.GaussianBlur(heatmap, (3, 3), heatmap.max())
        return heatmap, pointed_points
    
    
    def plot_points(image, pointed_points, radius=5, color=(255, 0, 0)):
        for (x1, y1, _, _) in pointed_points:
            cv2.circle(image, (x1, y1), radius, color, -1)
    
    def main():
        I = cv2.imread("glLqt.jpg", 0)
        heatmap, pointed_points = compute_pointness(I, n=5)
        pl.figure()
        pl.imshow(heatmap, cmap=pl.cm.jet)
        pl.colorbar()
        I_color = cv2.cvtColor(I, cv2.COLOR_GRAY2RGB)
        plot_points(I_color, pointed_points)
        pl.figure()
        pl.imshow(I_color)
    
    
    if __name__ == '__main__':
        main()
    

    Detected points. One for each contour

    Heatmap

    Notice that sharper points are brighter in the heatmap.

提交回复
热议问题