I have small csv that has 6 coordinates from Birmingham England. I read the csv with pandas then transformed it into GeoPandas DataFrame changing my latitude and longitude colu
Just want to add the use case concerning zooming whereby the basemap is updated according to the new xlim
and ylim
coordinates. A solution I have come up with is:
ax
that can detect xlim_changed
and ylim_changed
plot_area
calling ax.get_xlim()
and ax.get_ylim()
ax
and re-plot the basemap and any other dataExample for a world map showing the capitals. You notice when you zoom in the resolution of the map is being updated.
import geopandas as gpd
import matplotlib.pyplot as plt
import contextily as ctx
figsize = (12, 10)
osm_url = 'http://tile.stamen.com/terrain/{z}/{x}/{y}.png'
EPSG_OSM = 3857
EPSG_WGS84 = 4326
class MapTools:
def __init__(self):
self.cities = gpd.read_file(
gpd.datasets.get_path('naturalearth_cities'))
self.cities.crs = EPSG_WGS84
self.cities = self.convert_to_osm(self.cities)
self.fig, self.ax = plt.subplots(nrows=1, ncols=1, figsize=figsize)
self.callbacks_connect()
# get extent of the map for all cities
self.cities.plot(ax=self.ax)
self.plot_area = self.ax.axis()
def convert_to_osm(self, df):
return df.to_crs(epsg=EPSG_OSM)
def callbacks_connect(self):
self.zoomcallx = self.ax.callbacks.connect(
'xlim_changed', self.on_limx_change)
self.zoomcally = self.ax.callbacks.connect(
'ylim_changed', self.on_limy_change)
self.x_called = False
self.y_called = False
def callbacks_disconnect(self):
self.ax.callbacks.disconnect(self.zoomcallx)
self.ax.callbacks.disconnect(self.zoomcally)
def on_limx_change(self, _):
self.x_called = True
if self.y_called:
self.on_lim_change()
def on_limy_change(self, _):
self.y_called = True
if self.x_called:
self.on_lim_change()
def on_lim_change(self):
xlim = self.ax.get_xlim()
ylim = self.ax.get_ylim()
self.plot_area = (*xlim, *ylim)
self.blit_map()
def add_base_map_osm(self):
if abs(self.plot_area[1] - self.plot_area[0]) < 100:
zoom = 13
else:
zoom = 'auto'
try:
basemap, extent = ctx.bounds2img(
self.plot_area[0], self.plot_area[2],
self.plot_area[1], self.plot_area[3],
zoom=zoom,
url=osm_url,)
self.ax.imshow(basemap, extent=extent, interpolation='bilinear')
except Exception as e:
print(f'unable to load map: {e}')
def blit_map(self):
self.ax.cla()
self.callbacks_disconnect()
cities = self.cities.cx[
self.plot_area[0]:self.plot_area[1],
self.plot_area[2]:self.plot_area[3]]
cities.plot(ax=self.ax, color='red', markersize=3)
print('*'*80)
print(self.plot_area)
print(f'{len(cities)} cities in plot area')
self.add_base_map_osm()
self.callbacks_connect()
@staticmethod
def show():
plt.show()
def main():
map_tools = MapTools()
map_tools.show()
if __name__ == '__main__':
main()
Runs on Linux Python3.8 with following pip installs
affine==2.3.0
attrs==19.3.0
autopep8==1.4.4
Cartopy==0.17.0
certifi==2019.11.28
chardet==3.0.4
Click==7.0
click-plugins==1.1.1
cligj==0.5.0
contextily==1.0rc2
cycler==0.10.0
descartes==1.1.0
Fiona==1.8.11
geographiclib==1.50
geopandas==0.6.2
geopy==1.20.0
idna==2.8
joblib==0.14.0
kiwisolver==1.1.0
matplotlib==3.1.2
mercantile==1.1.2
more-itertools==8.0.0
munch==2.5.0
numpy==1.17.4
packaging==19.2
pandas==0.25.3
Pillow==6.2.1
pluggy==0.13.1
py==1.8.0
pycodestyle==2.5.0
pyparsing==2.4.5
pyproj==2.4.1
pyshp==2.1.0
pytest==5.3.1
python-dateutil==2.8.1
pytz==2019.3
rasterio==1.1.1
requests==2.22.0
Rtree==0.9.1
Shapely==1.6.4.post2
six==1.13.0
snuggs==1.4.7
urllib3==1.25.7
wcwidth==0.1.7
Note especially requirement for contextily==1.0rc2
On windows I use Conda (P3.7.3) and don't forget to set the User variables:
GDAL c:\Users\
PROJLIB c:\Users\