Most common substring of length X

前端 未结 8 2226
没有蜡笔的小新
没有蜡笔的小新 2021-02-09 13:49

I have a string s and I want to search for the substring of length X that occurs most often in s. Overlapping substrings are allowed.

For example, if s=\"aoaoa\" and X=3

8条回答
  •  粉色の甜心
    2021-02-09 14:15

    You can do this using a rolling hash in O(n) time (assuming good hash distribution). A simple rolling hash would be the xor of the characters in the string, you can compute it incrementally from the previous substring hash using just 2 xors. (See the Wikipedia entry for better rolling hashes than xor.) Compute the hash of your n-x+1 substrings using the rolling hash in O(n) time. If there were no collisions, the answer is clear - if collisions happen, you'll need to do more work. My brain hurts trying to figure out if that can all be resolved in O(n) time.

    Update:

    Here's a randomized O(n) algorithm. You can find the top hash in O(n) time by scanning the hashtable (keeping it simple, assume no ties). Find one X-length string with that hash (keep a record in the hashtable, or just redo the rolling hash). Then use an O(n) string searching algorithm to find all occurrences of that string in s. If you find the same number of occurrences as you recorded in the hashtable, you're done.

    If not, that means you have a hash collision. Pick a new random hash function and try again. If your hash function has log(n)+1 bits and is pairwise independent [Prob(h(s) == h(t)) < 1/2^{n+1} if s != t], then the probability that the most frequent x-length substring in s hash a collision with the <=n other length x substrings of s is at most 1/2. So if there is a collision, pick a new random hash function and retry, you will need only a constant number of tries before you succeed.

    Now we only need a randomized pairwise independent rolling hash algorithm.

    Update2:

    Actually, you need 2log(n) bits of hash to avoid all (n choose 2) collisions because any collision may hide the right answer. Still doable, and it looks like hashing by general polynomial division should do the trick.

提交回复
热议问题