I\'m looking for some pointers here as I don\'t quite know where to start researching this one.
I have a 2D matrix with 0 or 1 in each cell, such as:
1
I came up with the below algorithm, and it seems to work correctly.
Phase 1: move rows with most 1
s up and columns with most 1
s right.
1
s. We don't care
if 2 rows have the same number of 1
s.1
s. We don't care
if 2 cols have the same number of
1
s.Phase 2: repeat phase 1 but with extra criterions, so that we satisfy the triangular matrix morph.
Criterion for rows: if 2 rows have the same number of 1
s, we move up the row that begin with fewer 0
s.
Criterion for cols: if 2 cols have the same number of 1
s, we move right the col that has fewer 0
s at the bottom.
Example:
Phase 1
1 2 3 4 1 2 3 4 4 1 3 2
A 0 1 1 0 B 1 1 1 0 B 0 1 1 1
B 1 1 1 0 - sort rows-> A 0 1 1 0 - sort cols-> A 0 0 1 1
C 0 1 0 0 D 1 1 0 0 D 0 1 0 1
D 1 1 0 0 C 0 1 0 0 C 0 0 0 1
Phase 2
4 1 3 2 4 1 3 2
B 0 1 1 1 B 0 1 1 1
A 0 0 1 1 - sort rows-> D 0 1 0 1 - sort cols-> "completed"
D 0 1 0 1 A 0 0 1 1
C 0 0 0 1 C 0 0 0 1
Edit: it turns out that my algorithm doesn't give proper triangular matrices always.
For example:
Phase 1
1 2 3 4 1 2 3 4
A 1 0 0 0 B 0 1 1 1
B 0 1 1 1 - sort rows-> C 0 0 1 1 - sort cols-> "completed"
C 0 0 1 1 A 1 0 0 0
D 0 0 0 1 D 0 0 0 1
Phase 2
1 2 3 4 1 2 3 4 2 1 3 4
B 0 1 1 1 B 0 1 1 1 B 1 0 1 1
C 0 0 1 1 - sort rows-> C 0 0 1 1 - sort cols-> C 0 0 1 1
A 1 0 0 0 A 1 0 0 0 A 0 1 0 0
D 0 0 0 1 D 0 0 0 1 D 0 0 0 1
(no change)
(*) Perhaps a phase 3 will increase the good results. In that phase we place the rows that start with fewer 0
s in the top.