I wonder if it is possible to exactly reproduce the whole sequence of randn() of MATLAB with NumPy. I coded my own routine with Python/Numpy, and it is giving me a little bit di
Just wanted to further clarify on using the twister/seeding method: MATLAB and numpy generate the same sequence using this seeding but will fill them out in matrices differently.
MATLAB fills out a matrix down columns, while python goes down rows. So in order to get the same matrices in both, you have to transpose:
MATLAB:
rand('twister', 1337);
A = rand(3,5)
A =
Columns 1 through 2
0.262024675015582 0.459316887214567
0.158683972154466 0.321000540520167
0.278126519494360 0.518392820597537
Columns 3 through 4
0.261942925565145 0.115274226683149
0.976085284877434 0.386275068634359
0.732814552690482 0.628501179539712
Column 5
0.125057926335599
0.983548605143641
0.443224868645128
python:
import numpy as np
np.random.seed(1337)
A = np.random.random((5,3))
A.T
array([[ 0.26202468, 0.45931689, 0.26194293, 0.11527423, 0.12505793],
[ 0.15868397, 0.32100054, 0.97608528, 0.38627507, 0.98354861],
[ 0.27812652, 0.51839282, 0.73281455, 0.62850118, 0.44322487]])
Note: I also placed this answer on this similar question: Comparing Matlab and Numpy code that uses random number generation