Problem: Given a time series data which is a clickstream of user activity is stored in hive, ask is to enrich the data with session id using spark.
Session Definition
Not a straight forward problem to solve, but here's one approach:
lag
timestamp difference to identify sessions (with 0
= start of a session) per user for rule #1
rule #2
and create all session ids per userexplode
Sample code below:
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
import spark.implicits._
val userActivity = Seq(
("2018-01-01 11:00:00", "u1"),
("2018-01-01 12:10:00", "u1"),
("2018-01-01 13:00:00", "u1"),
("2018-01-01 13:50:00", "u1"),
("2018-01-01 14:40:00", "u1"),
("2018-01-01 15:30:00", "u1"),
("2018-01-01 16:20:00", "u1"),
("2018-01-01 16:50:00", "u1"),
("2018-01-01 11:00:00", "u2"),
("2018-01-02 11:00:00", "u2")
).toDF("click_time", "user_id")
def clickSessList(tmo: Long) = udf{ (uid: String, clickList: Seq[String], tsList: Seq[Long]) =>
def sid(n: Long) = s"$uid-$n"
val sessList = tsList.foldLeft( (List[String](), 0L, 0L) ){ case ((ls, j, k), i) =>
if (i == 0 || j + i >= tmo) (sid(k + 1) :: ls, 0L, k + 1) else
(sid(k) :: ls, j + i, k)
}._1.reverse
clickList zip sessList
}
Note that the accumulator for foldLeft
in the UDF is a Tuple of (ls, j, k)
, where:
ls
is the list of formatted session ids to be returnedj
and k
are for carrying over the conditionally changing timestamp value and session id number, respectively, to the next iterationStep 1
:
val tmo1: Long = 60 * 60
val tmo2: Long = 2 * 60 * 60
val win1 = Window.partitionBy("user_id").orderBy("click_time")
val df1 = userActivity.
withColumn("ts_diff", unix_timestamp($"click_time") - unix_timestamp(
lag($"click_time", 1).over(win1))
).
withColumn("ts_diff", when(row_number.over(win1) === 1 || $"ts_diff" >= tmo1, 0L).
otherwise($"ts_diff")
)
df1.show
// +-------------------+-------+-------+
// | click_time|user_id|ts_diff|
// +-------------------+-------+-------+
// |2018-01-01 11:00:00| u1| 0|
// |2018-01-01 12:10:00| u1| 0|
// |2018-01-01 13:00:00| u1| 3000|
// |2018-01-01 13:50:00| u1| 3000|
// |2018-01-01 14:40:00| u1| 3000|
// |2018-01-01 15:30:00| u1| 3000|
// |2018-01-01 16:20:00| u1| 3000|
// |2018-01-01 16:50:00| u1| 1800|
// |2018-01-01 11:00:00| u2| 0|
// |2018-01-02 11:00:00| u2| 0|
// +-------------------+-------+-------+
Steps 2
-4
:
val df2 = df1.
groupBy("user_id").agg(
collect_list($"click_time").as("click_list"), collect_list($"ts_diff").as("ts_list")
).
withColumn("click_sess_id",
explode(clickSessList(tmo2)($"user_id", $"click_list", $"ts_list"))
).
select($"user_id", $"click_sess_id._1".as("click_time"), $"click_sess_id._2".as("sess_id"))
df2.show
// +-------+-------------------+-------+
// |user_id|click_time |sess_id|
// +-------+-------------------+-------+
// |u1 |2018-01-01 11:00:00|u1-1 |
// |u1 |2018-01-01 12:10:00|u1-2 |
// |u1 |2018-01-01 13:00:00|u1-2 |
// |u1 |2018-01-01 13:50:00|u1-2 |
// |u1 |2018-01-01 14:40:00|u1-3 |
// |u1 |2018-01-01 15:30:00|u1-3 |
// |u1 |2018-01-01 16:20:00|u1-3 |
// |u1 |2018-01-01 16:50:00|u1-4 |
// |u2 |2018-01-01 11:00:00|u2-1 |
// |u2 |2018-01-02 11:00:00|u2-2 |
// +-------+-------------------+-------+
Also note that click_time
is "passed thru" in steps 2
-4
so as to be included in the final dataset.