I try retrain TF Object Detection API model from checkpoint with already .config file for training pipeline with tf.estimator.train_and_evaluate() method like in models/research
If you are training using the models repo of tensorflow/models.
models/research/object_detection/model_lib.py
file create_train_and_eval_specs
function can be modified to include the best exporter:
final_exporter = tf.estimator.FinalExporter(
name=final_exporter_name, serving_input_receiver_fn=predict_input_fn)
best_exporter = tf.estimator.BestExporter(
name="best_exporter",
serving_input_receiver_fn=predict_input_fn,
event_file_pattern='eval_eval/*.tfevents.*',
exports_to_keep=5)
exporters = [final_exporter, best_exporter]
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn, max_steps=train_steps)
eval_specs = [
tf.estimator.EvalSpec(
name=eval_spec_name,
input_fn=eval_input_fn,
steps=eval_steps,
exporters=exporters)
]