Is there an \"alpha shape\" function in 3 dimensions in python, other than the CGAL python bindings?
Alternatively, is there a way to extend the example below into 3D? <
I wrote some code for finding alpha shape surface. I hope this helps.
from scipy.spatial import Delaunay
import numpy as np
from collections import defaultdict
def alpha_shape_3D(pos, alpha):
"""
Compute the alpha shape (concave hull) of a set of 3D points.
Parameters:
pos - np.array of shape (n,3) points.
alpha - alpha value.
return
outer surface vertex indices, edge indices, and triangle indices
"""
tetra = Delaunay(pos)
# Find radius of the circumsphere.
# By definition, radius of the sphere fitting inside the tetrahedral needs
# to be smaller than alpha value
# http://mathworld.wolfram.com/Circumsphere.html
tetrapos = np.take(pos,tetra.vertices,axis=0)
normsq = np.sum(tetrapos**2,axis=2)[:,:,None]
ones = np.ones((tetrapos.shape[0],tetrapos.shape[1],1))
a = np.linalg.det(np.concatenate((tetrapos,ones),axis=2))
Dx = np.linalg.det(np.concatenate((normsq,tetrapos[:,:,[1,2]],ones),axis=2))
Dy = -np.linalg.det(np.concatenate((normsq,tetrapos[:,:,[0,2]],ones),axis=2))
Dz = np.linalg.det(np.concatenate((normsq,tetrapos[:,:,[0,1]],ones),axis=2))
c = np.linalg.det(np.concatenate((normsq,tetrapos),axis=2))
r = np.sqrt(Dx**2+Dy**2+Dz**2-4*a*c)/(2*np.abs(a))
# Find tetrahedrals
tetras = tetra.vertices[r