for a college project I\'m trying to implement the Bron–Kerbosch algorithm, that is, listing all maximal cliques in a given graph.
I\'m trying to implement the first alg
Implementation of two forms of the Bron-Kerbosch Algorithm from Wikipedia:
Without pivoting
algorithm BronKerbosch1(R, P, X) is if P and X are both empty then: report R as a maximal clique for each vertex v in P do BronKerbosch1(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v)) P := P \ {v} X := X ⋃ {v}
adj_matrix = [
[0, 1, 0, 0, 1, 0],
[1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 1],
[1, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0]]
N = {
i: set(num for num, j in enumerate(row) if j)
for i, row in enumerate(adj_matrix)
}
print(N)
# {0: {1, 4}, 1: {0, 2, 4}, 2: {1, 3}, 3: {2, 4, 5}, 4: {0, 1, 3}, 5: {3}}
def BronKerbosch1(P, R=None, X=None):
P = set(P)
R = set() if R is None else R
X = set() if X is None else X
if not P and not X:
yield R
while P:
v = P.pop()
yield from BronKerbosch1(
P=P.intersection(N[v]), R=R.union([v]), X=X.intersection(N[v]))
X.add(v)
P = N.keys()
print(list(BronKerbosch1(P)))
# [{0, 1, 4}, {1, 2}, {2, 3}, {3, 4}, {3, 5}]
With pivoting
algorithm BronKerbosch2(R, P, X) is if P and X are both empty then report R as a maximal clique choose a pivot vertex u in P ⋃ X for each vertex v in P \ N(u): BronKerbosch2(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v)) P := P \ {v} X := X ⋃ {v}
import random
def BronKerbosch2(P, R=None, X=None):
P = set(P)
R = set() if R is None else R
X = set() if X is None else X
if not P and not X:
yield R
try:
u = random.choice(list(P.union(X)))
S = P.difference(N[u])
# if union of P and X is empty
except IndexError:
S = P
for v in S:
yield from BronKerbosch2(
P=P.intersection(N[v]), R=R.union([v]), X=X.intersection(N[v]))
P.remove(v)
X.add(v)
print(list(BronKerbosch2(P)))
# [{0, 1, 4}, {1, 2}, {2, 3}, {3, 4}, {3, 5}]