Python - generate array of specific autocorrelation

前端 未结 1 550
广开言路
广开言路 2021-02-09 07:30

I am interested in generating an array(or numpy Series) of length N that will exhibit specific autocorrelation at lag 1. Ideally, I want to specify the mean and variance, as wel

1条回答
  •  梦如初夏
    2021-02-09 07:44

    If you are interested only in the auto-correlation at lag one, you can generate an auto-regressive process of order one with the parameter equal to the desired auto-correlation; this property is mentioned on the Wikipedia page, but it's not hard to prove it.

    Here is some sample code:

    import numpy as np
    
    def sample_signal(n_samples, corr, mu=0, sigma=1):
        assert 0 < corr < 1, "Auto-correlation must be between 0 and 1"
    
        # Find out the offset `c` and the std of the white noise `sigma_e`
        # that produce a signal with the desired mean and variance.
        # See https://en.wikipedia.org/wiki/Autoregressive_model
        # under section "Example: An AR(1) process".
        c = mu * (1 - corr)
        sigma_e = np.sqrt((sigma ** 2) * (1 - corr ** 2))
    
        # Sample the auto-regressive process.
        signal = [c + np.random.normal(0, sigma_e)]
        for _ in range(1, n_samples):
            signal.append(c + corr * signal[-1] + np.random.normal(0, sigma_e))
    
        return np.array(signal)
    
    def compute_corr_lag_1(signal):
        return np.corrcoef(signal[:-1], signal[1:])[0][1]
    
    # Examples.
    print(compute_corr_lag_1(sample_signal(5000, 0.5)))
    print(np.mean(sample_signal(5000, 0.5, mu=2)))
    print(np.std(sample_signal(5000, 0.5, sigma=3)))
    

    The parameter corr lets you set the desired auto-correlation at lag one and the optional parameters, mu and sigma, let you control the mean and standard deviation of the generated signal.

    0 讨论(0)
提交回复
热议问题