I am trying to use a function that uses some OpenCV function on the image. But the data I am getting is a tensor and I am not able to convert it into an image.
d
You confused with the symbolic operation in the Lambda
layer with the numerical operation in a python function.
Basically, your custom operation accepts numerical inputs but not symbolic ones. To fix this, what you need is something like py_func in tensorflow
In addition, you have not considered the backpropagation. In short, although this layer is non-parametric and non-learnable, you need to take care of its gradient as well.
import tensorflow as tf
from keras.layers import Input, Conv2D, Lambda
from keras.models import Model
from keras import backend as K
import cv2
def image_func(img):
img=cv2.cvtColor(img,cv2.COLOR_BGR2YUV)
img=cv2.resize(img,(200,66))
return img.astype('float32')
def image_tensor_func(img4d) :
results = []
for img3d in img4d :
rimg3d = image_func(img3d )
results.append( np.expand_dims( rimg3d, axis=0 ) )
return np.concatenate( results, axis = 0 )
class CustomLayer( Layer ) :
def call( self, xin ) :
xout = tf.py_func( image_tensor_func,
[xin],
'float32',
stateful=False,
name='cvOpt')
xout = K.stop_gradient( xout ) # explicitly set no grad
xout.set_shape( [xin.shape[0], 66, 200, xin.shape[-1]] ) # explicitly set output shape
return xout
def compute_output_shape( self, sin ) :
return ( sin[0], 66, 200, sin[-1] )
x = Input(shape=(None,None,3))
f = CustomLayer(name='custom')(x)
y = Conv2D(1,(1,1), padding='same')(x)
model = Model( inputs=x, outputs=y )
print model.summary()
Now you can test this layer with some dummy data.
a = np.random.randn(2,100,200,3)
b = model.predict(a)
print b.shape
model.compile('sgd',loss='mse')
model.fit(a,b)