I\'ve got coordinates of 4 points in 2D that form a rectangle and their coordinates after a perspective transformation has been applied.
The perspective transfo
OpenCV has a neat function that does this called getPerspectiveTransform. The source code for this function is available on github with this description:
/* Calculates coefficients of perspective transformation
* which maps (xi,yi) to (ui,vi), (i=1,2,3,4):
*
* c00*xi + c01*yi + c02
* ui = ---------------------
* c20*xi + c21*yi + c22
*
* c10*xi + c11*yi + c12
* vi = ---------------------
* c20*xi + c21*yi + c22
*
* Coefficients are calculated by solving linear system:
* / x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\
* | x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1|
* | x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2|
* | x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|,
* | 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0|
* | 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1|
* | 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2|
* \ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/
*
* where:
* cij - matrix coefficients, c22 = 1
*/
This system of equations is smaller as it avoids solving for W
and M33
(called c22
by OpenCV). So how does it work? The linear system can be recreated by the following steps:
Start with the formulas for projection transformation:
c00*xi + c01*yi + c02
ui = ---------------------
c20*xi + c21*yi + c22
c10*xi + c11*yi + c12
vi = ---------------------
c20*xi + c21*yi + c22
Multiply both sides with the denominator:
(c20*xi + c21*yi + c22) * ui = c00*xi + c01*yi + c02
(c20*xi + c21*yi + c22) * vi = c10*xi + c11*yi + c12
Distribute ui
and vi
:
c20*xi*ui + c21*yi*ui + c22*ui = c00*xi + c01*yi + c02
c20*xi*vi + c21*yi*vi + c22*vi = c10*xi + c11*yi + c12
Assume c22 = 1
:
c20*xi*ui + c21*yi*ui + ui = c00*xi + c01*yi + c02
c20*xi*vi + c21*yi*vi + vi = c10*xi + c11*yi + c12
Collect all cij
on the left hand side:
c00*xi + c01*yi + c02 - c20*xi*ui - c21*yi*ui = ui
c10*xi + c11*yi + c12 - c20*xi*vi - c21*yi*vi = vi
And finally convert to matrix form for four pairs of points:
/ x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\
| x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1|
| x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2|
| x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|
| 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0|
| 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1|
| 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2|
\ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/
This is now in the form of Ax=b
and the solution can be obtained with x = A\b
. Remember that c22 = 1
.