Alternate different models in Pipeline for GridSearchCV

后端 未结 2 1894
隐瞒了意图╮
隐瞒了意图╮ 2021-02-09 03:11

I want to build a Pipeline in sklearn and test different models using GridSearchCV.

Just an example (please do not pay attention on what particular models are chosen):

2条回答
  •  野性不改
    2021-02-09 03:38

    Lets assume you want to use PCA and TruncatedSVD as your dimesionality reduction step.

    pca = decomposition.PCA()
    svd = decomposition.TruncatedSVD()
    svm = SVC()
    n_components = [20, 40, 64]
    

    You can do this:

    pipe = Pipeline(steps=[('reduction', pca), ('svm', svm)])
    
    # Change params_grid -> Instead of dict, make it a list of dict
    # In the first element, pass parameters related to pca, and in second related to svd
    
    params_grid = [{
    'svm__C': [1, 10, 100, 1000],
    'svm__kernel': ['linear', 'rbf'],
    'svm__gamma': [0.001, 0.0001],
    'reduction':pca,
    'reduction__n_components': n_components,
    },
    {
    'svm__C': [1, 10, 100, 1000],
    'svm__kernel': ['linear', 'rbf'],
    'svm__gamma': [0.001, 0.0001],
    'reduction':svd,
    'reduction__n_components': n_components,
    'reduction__algorithm':['randomized']
    }]
    

    and now just pass the pipeline object to gridsearchCV

    grd = GridSearchCV(pipe, param_grid = params_grid)
    

    Calling grd.fit() will search the parameters over both the elements of the params_grid list, using all values from one at a time.

    Please look at my other answer for more details: "Parallel" pipeline to get best model using gridsearch

提交回复
热议问题