Could anyone point me to a library/code allowing me to perform low-rank updates on a Cholesky decomposition in python (numpy)? Matlab offers this functionality as a function cal
Here is a Python package that does rank 1 updates and downdates on Cholesky factors using Cython: https://github.com/jcrudy/choldate
Example:
from choldate import cholupdate, choldowndate
import numpy
#Create a random positive definite matrix, V
numpy.random.seed(1)
X = numpy.random.normal(size=(100,10))
V = numpy.dot(X.transpose(),X)
#Calculate the upper Cholesky factor, R
R = numpy.linalg.cholesky(V).transpose()
#Create a random update vector, u
u = numpy.random.normal(size=R.shape[0])
#Calculate the updated positive definite matrix, V1, and its Cholesky factor, R1
V1 = V + numpy.outer(u,u)
R1 = numpy.linalg.cholesky(V1).transpose()
#The following is equivalent to the above
R1_ = R.copy()
cholupdate(R1_,u.copy())
assert(numpy.all((R1 - R1_)**2 < 1e-16))
#And downdating is the inverse of updating
R_ = R1.copy()
choldowndate(R_,u.copy())
assert(numpy.all((R - R_)**2 < 1e-16))