With a mutable object I can write something like
var user = DAO.getUser(id)
user.name = \"John\"
user.email =\"john@doe.com\"
// logic on user
Both ways you've mentioned belongs to functional and OO paradigms respectively. If you prefer functional decomposition with abstract data type, which, in Scala, is represented by case classes, then choose copy method. Using mutators is not a good practice in my option, cause that will pull you back to Java/C#/C++ way of life.
On the other hand making ADT case class like
case class Person(name: String, age: String)
is more consise then:
class Person(_name: String, _age: String) {
var name = _name
var age = _a
def changeName(newName: String): Unit = { name = newName }
// ... and so on
}
(not the best imperative code, can be shorter, but clear).
Of cause there is another way with mutators, just to return a new object on each call:
class Person(val name: String,
val age: String) {
def changeName(newName: String): Unit = new Person(newName, age)
// ... and so on
}
But still case class way is more consise.
And if you go futher, to concurrent/parallel programming, you'll see that functional consept with immutable value are much better, then tring to guess in what state your object currently are.
Update
Thanks to the senia, forgot to mention two things.
Lenses
At the most basic level, lenses are sort of getters and setters for immutable data and looks like this:
case class Lens[A,B](get: A => B, set: (A,B) => A) {
def apply(a: A) = get(a)
// ...
}
That is it. A lens is a an object that contains two functions: get and set. get takes an A and returns a B. set takes an A and B and returns a new A. It’s easy to see that the type B is a value contained in A. When we pass an instance to get we return that value. When we pass an A and a B to set we update the value B in A and return a new A reflecting the change. For convenience the get is aliased to apply. There is a good intro to Scalaz Lens case class
Records
This one, ofcause, comes from the shapeless library and called Records. An implementation of extensible records modelled as HLists of associations. Keys are encoded using singleton types and fully determine the types of their corresponding values (ex from github):
object author extends Field[String]
object title extends Field[String]
object price extends Field[Double]
object inPrint extends Field[Boolean]
val book =
(author -> "Benjamin Pierce") ::
(title -> "Types and Programming Languages") ::
(price -> 44.11) ::
HNil
// Read price field
val currentPrice = book.get(price) // Inferred type is Double
currentPrice == 44.11
// Update price field, relying on static type of currentPrice
val updated = book + (price -> (currentPrice+2.0))
// Add a new field
val extended = updated + (inPrint -> true)